
www.manaraa.com

A Multilingual Database Management System
For Ideographic Languages

Chin Lu & K.H. Lee
Computer Science and Engineering Department

The Chinese University of Hong Kong, Shatin, Hong Kong

Abstract It is desirable to store text data in a database so
that the basic functions are provided by the
underlying database management system
(DBMS). However, most DBMSs use English-like
semantics as the query language for data
manipulation. Although they can be localized to
users' preferred languages, text processing
under database systems are still far short of
support for handling ideographic characters, such
as Chinese, Japanese, and Korean [2]. Usually,
sorting and indexing in a database system use
the internal code sequence defined in the given
codeset. For alphabet-based languages, such as
English and French, sorting and indexing is quite
straight forward because the internal code
sequence naturally reflects the alphabetic order.
But, sorting and indexing ideographic characters
such as Chinese based on internal code sequence
does not reveal relationships among data.
Therefore, browsing data indexed based on
internal code sequence cannot reveal the
relationships among the neighbouring data.

In this project, we have built a database

management system, referred to as Int_OODB,

which has an internationalized user interface.

Int_OODB can store text data in its original

codeset. Code conversion facility is provided if

the codeset used by users in his operating

environment is different from the codeset in

which data is originally stored. In addition, the

sorting of data can be specified by a collation

sequence. Our system is built in C++ with the

embedded OBST object management system, a

public domain software from the Stone project.

We consider data entries as persistent objects

which have sorting and indexing methods

associated with them. The user interface is

written on top of Motif(Version 1.2) under the X

windows environment which supports

internationalization and localization based on

ISO POSIX. We localized Int_OODB for English,

mainland China's simplified Chinese

environment, and Taiwan's traditional Chinese

environment.

To handle data written in different codesets and
to provide a software that can work under
different languages and cultural conventions, we
have built a DBMS, referred to as Int_OODB,

which has an internationalized user interface.
Int_OODB stores text data in its original codeset.
Code conversion facility is provided if the
operating environment codeset is different from
the codeset of stored data. In addition, the
sorting of data can be specified by a collation
sequence other than its internal code sequence.
Our system is built using C++ with the embedded
OBST object management system from the Stone
project. OBST is a public domain software that
provides a structured and open environment for
software engineering projects [5]. We consider
data entries as persistent objects which have
sorting and indexing methods associated with
them. The user interface is written on top of

1. Introduction

There is a general trend to develop
internationalized software for the global market.
A software needs to be ported for different
regions where the language and culture
conventions differs from that of the place where
the software was originally developed [1,2]. Also,
with the network communication available
almost in every corner of the world, it is very
likely to receive some multilingual documents or
documents written in languages coded in non-
ASCII codesets [3]. Storing data in their original
codeset is very import because converted data
sometimes cannot avoid loss of information [4].
Consequently, such a system must be able to
access these data and display them in a codeset
that the operating environment can handle and
the users are familiar with.

www.manaraa.com

Motif [6,7] under the X windows environment
which supports internationalization and
localization based on the locale specifications of
ISO POSIX[8]. Our focus is mainly on a DBMS
capable of supporting different codesets. We have
localized Int_OODB for English, mainland
China's simplified Chinese environment, and
Taiwan's traditional Chinese environment.
Int_OODB is very useful in keeping text
information in its original codeset.. It can be
used in library catalogue systems, electronic
library systems, and publishing and document
retrieval systems.
The rest of the paper is organized as follows.
Section 2 introduces basic concepts and related
work. Section 3 presents the design principles
and system architecture. Section 4 describes
design and implementation details. Section 5 is
the conclusion.

2. Background Information And
Related Work

Database manipulation of Chinese text
information has great demand in China, Taiwan,
Hong Kong and other places where Chinese
characters are used. In general, computer
processing of ideographic languages like Chinese
is more difficult than alphabet-based languages
such as English. The complexity comes mainly
from the large set of Chinese characters that a
coded character set has to represent. A coded
character set is often referred to as a codeset [9].
Chinese processing is further complicated by the
fact that more than one codeset is used by
Chinese in different regions. It is possible to have
different encodings for the same Chinese
Character.

Today, GB-2312 is the commonly used codeset in
China and the CNS is the only official standard
codeset used in Taiwan. The so called Big-5
codeset, which is an industry de facto standard, is
also commonly used in Taiwan, Hong Kong and
other places as well. In a multiple codeset
environment, codeset information must be
maintained if we want to keep data in its original
form. We refer the machanism of maintaining
codeset information as codeset announcement.
With codeset announcement, data can be
converted to others transparently without user's
intervention.

2.1. Collation Sequence

For sorting and indexing of Chinese text
information, four types of ordering methods,
referred to as collation sequence [8], are most
commonly used. The following shows an example
of five names which yield different orders under
different collation sequences:

1) By radicals first, then by strokes within
radicals
��, ��,���, ��, ��

2) By strokes first, then by radicals within
strokes
���, ��, ��, ��, ��

3) By pronunciation(Mainland Pin Yin)
�� (Chen),�� (Li), ��� (Wang), ��
(Zhang), � �(Zhao)

4) By internal code values(Big-5)
���(A4FD), ��(A7F5), ��(B169), �
�(B3AF), ��(BBAF)

The fourth type, which does not show any
particular relationship, is the only collation
sequence that most database system supports.
One can argue that a particular collation
sequence can be provided using secondary
indexing method if a user application so requires.
However, this approach is on an ad hoc basis, and
it does not make the most commonly used
collation sequences generally available in
Chinese or other languages where sorting in
internal code sequence is not desirable. A better
approach is for the DBMS to provide mechanisms
to install some commonly used collation
sequences so that any user program can choose
them at will like writing index key expressions
without the need to build up secondary indexing
individually.

2.2. I18N and L10N [8,9]

I18N(InternalizatioN) is the process of writing
software which contains no code that is
dependent on the target language, cultural
conventions, and the character codeset of that
language. L10N (LocalizatioN) refers to the
process of customizing a software so that it can
run under a particular language environment,
referred to as the operating environment. To
avoid changes to the source code of an
internationalized software when it is being
localized, the localization should be done only
through changes to some tables or databases

www.manaraa.com

which contain language/culture related data. For
instance, a menu bar which displays the English

word "Exit" should be "��" or "��" in Chinese.

To write an internationalized software, terms like
"Exit" should not be coded inside the program.

To facilitate I18N and to make L10N easy, ISO
POSIX provides the specification for a set of
language/culture related data, referred to as
locale, and a set of standard functions for
accessing items in a locale. Each locale defines (1)
the coded character set, (2) the collation sequence
if different from the internal code sequence, (3)
character classifications such as alphabet letters,

upper/lower case letters, and control characters,
etc., (4) the set of input methods supported, and
(5) cultural convention data such as date format,
radix character, currency symbols, etc. POSIX
also provides message catalogues which allow
messages to be stored separately from the
program code. An internationalized software will
use POSIX functions to access data in a given
locale which can be given at installation or run
time. Whereas the localization process requires
filling up the data items in that specific locale
only.

2.3. OBST & X/Open

OBST is an object-oriented persistent object
management system[5]. It features a hybrid data
model using objects and values. It provides
mechanisms to define several categories of types,
the hierarchy is shown in Figure 1.

Figure 1 Hierarchy of OBST types

• enumeration type - specify finite set of

constants
•••••••••••••••••••••••••••• external type - interface OBST

with the type of host

language
•••••••••••••••••••••••••••• scalar type - primitive

components by which classes

are defined
•••••••••••••••••••••••••••• union type - for type

generalization mechanism

•••••••••••••••••••••••••••• class type - user defined

class type for objects

A class type is defined by two parts: the
structural properties and the behavioral
properties referred to as components and
methods, respectively. Components can be
instances of a scalar type or an object. Methods

of a class type are the entry points by which the
instance of the class can be accessed. They
describe the behavioral properties of the class
type. There are two types of methods in OBST:
definite methods and abstract methods. Definite

methods are non-static methods that cannot be
redefined in a derived class whereas the abstract

methods must be redefined in derived classes.

OBST's data model offers inheritance which
means that one class(subclass) acquires all
properties of the super class from which it is
derived. OBST also offers multiple inheritance in
which a subclass can inherit from several super
classes. Besides, OBST allows declaration and
initiation of generic classes. Generic classes are
classes which is parameterized with one or more
type parameters. When instantiated, the generic
class is bind to type parameters. There are some
predefined generic classes of OBST which is very
useful in our project (e.g. List< >, ...) and will be
discussed later.

OBST provides a storage layer which uses
containers as the mechanism for clustering and
buffer management. All operations on containers
are efficiently implemented by the persistent
storage manager (PSM). Database objects can be
stored in an individual container so that the
mechanism of clustering, buffer management of
each database is provided by the OBST without
the need for enhancement. However, being an
Object store and management system, OBST
lacks support in certain common features of
DMBS such as data dictionary maintenance,
index building mechanisms, and database
manipulation operations.

We have chosen OBST to do our pilot project
because it is a free object management system
running under X-window environment. Being
an Object management system, OBST provides
encapsulation of data. This is very important for
codeset announcement because it should be
encapsulated with data. When users are in the

www.manaraa.com

retrieval mode to browse databases, the codeset
information should be hidden from them. Also,
OBST provides user redefined functions, the
abstract methods, with which we can incorporate
code conversion routines in the access methods
which again can be provided transparently to
users.

3. Design Principles and System
Architecture

This project have three main objectives. Firstly,
the user interface of the system must be
internationalized. This ensures localization does
not require any code level change. More than one
operating environment should be provided to
access the same database so that users can work
under the environment that they are familiar
with. Secondly, the system must be able to keep
data coming from different sources in their
original codesets so that there is no data loss as
far as data store is concerned. Finally, the DBMS
must have additional support for ideographic
languages.

3.1 I18N User Interface

To provide an internationalized user interface, at
least two issues need to be addressed. Firstly,
the source code must not contain language
related elements for the display of messages such
as prompts, menu items, dialogue box, and on-
line help, etc. These display messages must be
kept in structured tables that can be accessed
according to individual user's preference. Also,
there are usually more than one input method
associated with an ideographic language. For
instance, there are around 5 to 10 commonly used
input methods for Chinese input. Therefore, not
only should the interface be written independent
of the input methods, it should be able to handle
different input methods at users requests.

The system must also allow the interface to run
in an operating environment that a user is
familiar with. If he is an English user, the
system should display all the menus, warnings,
help instructions in English. Whereas, for a
Chinese user, he should have the option to choose
the system that interact with him in either
simplified Chinese or traditional Chinese. In fact,
in the X windows environment where ISO's
POSIX is supported, different users can load the
same software under different locales with access

to the same set of databases for different
languages. In addition, for ideographic language
interface initiation, the input methods associated
with them must also be loaded.

3.2. Codeset Announcement and
Automatic Code Conversion

To keep text data in their original codeset, the
database schema definition must provide items
to specify data items' codeset information,
referred to as codeset announcement [10]. The
inheritance feature in OBST can be used to
provide uniform codeset announcement. Codeset
announcement should be supported in two levels,
one at the database level and the other at the
individual record level. When announced at the
database level, all text data are assumed to be
written in that specific codeset. When announced
at the individual record level, the announcement
applies to the record only. Two levels of codeset
announcement provide flexibility. For instance,
if a database keeps one article in each record, a
database level codeset announcement would be
inappropriate if the article sources are different..
However, in a database which keeps all staff
names and information of one company, it is too
tedious and unnecessary to specify the codeset
announcement at the record level. Codeset
announcement, no matter where it is used,
applies to text data only. Its specification does
not affect any data types other than character
string type and memo types.

Let us envision a sinario in which a user starts
Int_OODB in a simplified Chinese locale, say the
GB locale, and suppose that the data item he
tries to retrieve and browse is coded in CNS for
the tranditional Chinese. If the system does not
realize that the encoding of the data item is not
compatible with that of the operating
environment(GB), the data item will be displayed
assuming GB encoding and garbage will be
displayed. With the codeset announce available,
the system can recognize the difference and try to
display the data in one of two different ways;
One is to switch the display environment to that
of the CNS, another is to convert the data to GB
format before it is displayed. In this project, we
choose to use the conversion approach rather
than switching environment because conversion
is more straight forward as long as the
conversion programs (referred to as converters

sometimes) are available. In this way, there is no

www.manaraa.com

need to start another interface under a different
locale.

3.3. Ideographic Language Support And
Data Format

The most important issue in ideographic
language support is to provide collation
sequences other than internal code sequence at
the system level. This is to avoid secondary
indexing at the users level on an ad hoc basis for
the commonly used collation sequences. Also,
codesets for ideographic languages are often
represented by multibyte encoding that has fixed
length for each character, or by multibyte
encoding that can be of variable lengths.
Therefore, the source code of the DMBS not only
has to be eight bits clean, it should also be able to
read and write data in terms of number of
characters rather than in terms of bytes.

3.4. Overall System Architecture

The Int_OODB system architecture is shown in
Figure 2. Five major modules and components
are built into Int_OODB on top of the OBST
subsystem, namel, the Internationalized Menu-

Driven User Interface(I18N UI) module, the
Ideographic Language Support & Code

Conversion(ILS&CC) module, the B+-Tree

component, the Data Dictionary component, and
the Database Objects component. The five parts
are structured into three layers with the lower
layers providing services to higher layers.

Figure 2. Overall System Design Architecture

The I18N UI module is built at Layer 3. It
provides the internationalized interface for users
to access the database. The 2nd layer, where the
ILS&CC is defined, provides all the ideographic
language support and code conversion functions
including input method servers, collation
sequence specifications and installation, and code

conversion utilities. Layer 1 has three
components: the B+-Trees for indexing, the Data
Dictionary for maintaining database schema, and
the Database Objects where the object-oriented
databases are defined and accessed. Being an
object management system, OBST lacks support
in database definitions, indexing methods,

and data dictionary maintenance. Therefore, we
have to build them at the lowest layer so that
Int_OODB would be an actual DBMS from above
Layer 1.

4. System Design And Implementation

In this section we will present the design and
implementation of the five system components of
Int_OODB.

4.1. Database Objects

The databases in Int_OODB system are
represented by a collection of database objects.
Figure 3 shows the basic elements of a database
object, defined by the class, DB_object. Root_dir

is an instance of OBST predefined persistent
directory class. Through Root_dir, a DB_object
can be referenced by its name. Whenever, a new
DB_object (i.e. the database) is created, the name
(of the type sos_String) of the object must be
supplied to the Root_dir so that it can be
referenced later.

Figure 3. Components of db_object

A DB_object has three subclasses of objects: a
data structure object of the Data_struct type, a
list of objects of the Data_store type, and a list of

www.manaraa.com

objects of the Data_index type. In addition, it has
a database level codeset announcement
associated with it of the sos_String type. the
Data_struct object is nothing but a record to store
the database schema definition Data_index class
is implemented by B+_trees which will be
discussed in Section 4.2

Each database record object of the Db_record type
as shown in the following definition contains the
actual data, the record level codeset
announcement, and a List type provided by
OBST to link to other records in the same
database.

Db_record {
public:
sos_String append_r(sos_String);
sos_String insert_r(Index, sos_String);
sos_String delete_r(Index);
sos_String retrieve_r(Index)
sos_Int deleted;
sos_String local_codeset;
List<sos_String> r_list;

};

A record object has four methods: append(),
insert(), delete(), and retrieve() for external use.
Since Db_record is a subclass of the predefined
List type, the four external methods are actually
inherited rather that created anew. To minimize
deletion of data at physical level, a record is
considered deleted if the deleted variable is set.

4.2 B+-Trees And Data Dictionary

The Data_index objects of Int_OOBST are
responsible for the storage of indexing structures.

We used the B+-tree structure to access data
records. A B+_tree is made of nodees of four class
types: buc_ele, bucket, B_node, and B_tree. Due
to the paper length, we will not list the structures
here. The relations among these classes are
indicated in Figure 4. Basically these classes
form a hierarchy in terms of building the B+_tree.
The buc_ele class is basically equivalent to a
record number. We constructed it into an object
class to make uniform access to the B+_tree.
The object of bucket holds a list of record numbers
having the same index key value. The B_node

class is the most important class among all
B+_tree related classes. An instance of it is
either an intermediate node or a leaf node. If it is
an intermediate node, it hold keys and pointers

pointing to its child nodes. If it is a leaf node, it
will hold keys and the corresponding buckets.

Figure 4. Relation Between Classes For B+-
Tree

Figure 5 shows the internal structure of a
B_node class. The B_Tree class is seen by
application programmers for operations like
insertion and search. Every instance of it
contains a B_node which is the root node of the
B_Tree. From the root node, all relevant data of
the tree is accessible by the program.

Figure 5. B_node Internal Structure

The data dictionary component is an addition to
the OBST system to provide directory services for
users to query about databases that exist in the
system. Our data dictionary component offers
three services. Firstly, it maintains a name list
of database created. Secondly, it maintains index
object(s) created for each database. Thirdly, it
provides directory service which allows databases
to be organized in a hierarchical way.

Figure 6 shows the structure of the data
dictionary. A Data Dictionary object is composed
of Dictionary Entries. Each entry contains
dictionary information of one database object
including its name and the indices defined under
it. The index object not only points to the
B+_tree of this index, it also keeps the index
expression that created this index so that such
information can be obtained later.

www.manaraa.com

Figure 6 Data Dictionary Structures and Class
Relationships

4.3. Ideographic Support

The mechanism for defining collation sequences
is provided by POSIX under the definition of
locale [8]. In order to use a collation sequence
other than the internal sequence, the
environment variable LC_COLLATE must be set.
POSIX specification allows only one collation
sequence to be defined under each locale
directory. To support different collation
sequences, we must create different locale
directories with the same set of files except the
collation sequence file. An index created to use
the collation sequence must use POSIX function
to obtain the value for each key before the key
can be inserted into the index tree. When sorting
data based on a specific collation sequence, the
order is set according to the POSIX conforming
function strcoll() rather than strcmp() in ANSI C.
Int_OODB aims at providing a facility so that the
commonly defined collation sequences can be
defined. When a collation sequence is provided in
the system, we can easily incorporate it into the
Int_OODB. The provision of collation sequence is
a part of the localization process. In this project,
we have built the Chinese collation sequences
based on radical, spelling and number of strokes.

In setting the proper operating environment for
ideograph language users, we have also built our
input method handling mechanism based on
locale [11]. That is, when you start the system by
specifying a particular locale, the input methods
associated with that locale will be loaded
automatically. The input methods are handled
by an input method server that can serve
applications in different locales at the same time.
When you start Int_OODB more than once,
possibly in different operating environments, the
input methods will be handled by one server
similar to X window servers. Due to the scope of

this paper, details of the input method server will
be described in a separate paper.

We have used a code conversion interface
developed by the Hanzix group to provide
automatic code conversion. mechanism. Code
conversion is needed in the following three
situations when

• Retrieving data from a database whose codeset
is different from the operating environment's
codeset

• Storing new/updated database items back to
the database whose database /record level
codeset is different from that of the operating
environment

• Retrieving directory/database names from the
data dictionary

 Three functions hz_iconv_open(), hz_iconv(),
and hz_iconv_close(). are the core provided in the
code conversion interface. Basically, a code
converter is a program that takes a string as
input and returns a converted string of the
specified codeset. Before any conversion can be
done, the converter has to be loaded first by using
hz_iconv_open(). The actual conversion is done
by hz_iconv(). When conversion is no longer
needed, the converter can be closed by
hz_iconv_close(). The conversion functions are
built into the database abstract methods.
Therefore, its implementation is completely
transparent to users. Automatic code conversion
is provided according to the locale of the user's
operating environment and the code
announcement mechanism provided in
Int_OODB. One thing that needs to be pointed
out is that character conversions sometimes may
have a one-to-many mapping. This can
sometimes cause problem especially if the
conversion is done for storing data items back to
the database because in this case the so called
original data format is not original anymore.
Dealing with one-to-many mapping is out of the
scope of this project. However, the Hanzix code
conversion interface does provide mechanism to
load different converters, some of which can be
intelligent, thus avoid the one-to-many mapping
problem. Int_OODB can use this mechanism to
load a converter of user's choice by specifying it
in a resource file used when starting up the user

www.manaraa.com

interface. We do encourage people to update a
database in an environment that is not consistent
with its codeset announcement. But the system
does not enforce it.

The date type which is supported as the basic
data type in most DBMS must take into account
of different cultural conventions. Different
countries and regions use different formats. For
instance, U.S. uses mm/dd/yy format whereas
Hong Kong uses dd/mm/yy format. To make sure
that data can be stored and interpreted correctly,
we have fixed all date type data to be stored in
the YYMMDD format. The conversion to its
right format for output is done through the locale
specification by obtaining the LC_DATE format.

4.4 Internationalized User Interface

The user interface is implemented using Motif
under the X Windows environment. The I18N of
the user interface is accomplished by completing
three parts. Firstly, we have separated the
program logic from program messages by using
calls to catopen(), catgets() and catclose() to
retrieve message text at run-time rather than
hard-code messages into the source program.
Secondly, we have created a set of message
source files for localization. For Chinese
localization. We wrote only one set of message
source files for one locale and use the Hanzix
code conversion routines to port it to a different
Chinese locale. Thirdly, we have generated a
message catalogue from the message source file
using gencat, a program that comes with the
NLS(National Language Support) package of X
window.
The message files are written in a very similar
way as abc.msf with cxterm, a Chinese terminal
emulator for X window system [12]. The text
source file has a suffix .msf. Each message is
associated with an integer as an index and each
group of Chinese messages can be grouped
together with a set number. For example,

$set 1
1 ��
2. ��
$ set 2
1. � �
2. � �

After the message catalogues are generated using
the gencat program, they should be located at

the respective locale directories. For instance,
the GB message files should be put in directory
~/nlsmsg/zh whereas the CNS message files
should be put in ~/nlsmsg/zh_TW. The name of
the language(codeset) and the path for the
message files should be set in the environment
variables LANG and NLSPATH, respectively.
The following is an example of how to set it for
the GB locale:

setenv LANG zh

setenv NLSPATH ~/nlsmsg/%L/%N

where %L is a variable to represent the
environment variable LANG and %N is a
variable to represent the catalogue names
specified in catopen(). A catalogue is opened by
the function catopen() with the following syntax:

nl_catd catd catopen ("abc.cat", 0)

where catopen() returns a nl_catd as a file
handler for future use. The second argument of
catopen() is reserved for future use and its
default value is 0 up to now. The messages are
retrieved by the function catgets() with the
following syntax:

char * catgets (catd, 1, 1, "Hi")

where the first argument is a nl_catd, the second
argument is a set number and the third
argument is the index of the Chinese message.
The last argument is used as the default return
value in case the specified message does not exist
in the catalogue.

Figure 7a and Figure 7b show two
instantiations of the Int_OODB with different
LANG settings. In Figure 7a, the value of
LANG was set to zh, the name of mainland
China's GB locale. In Figure 7b the value of
LANG was set to zh_TW Taiwan's CNS locale.
Notice, that the difference between the two is in
the way that Chinese is displayed. The database
opened on the screen is in fact the same.
Conversion of data is done automatically.

www.manaraa.com

Figure 7a Interface for zh

Figure 7b Interface for zh_TW

5. Conclusion
In this project, we have implemented an
internationalized database system with
additional support for ideographic languages.
Our focuses is on supporting different Chinese
environments, but the system can also be
extended to support other ideograph languages.

Through the development process, we have
realized that internationalization can improve
productivity and save time for localizations.
However, under the POSIX specification,
multilingual support is limited to two languages
in one application, namely, English(or any other
alphabet based language) plus another language,
such as, Chinese. It does not provide a general
multilingual environment in the sense that an
arbitrary number of languages can be supported
in one application. Of course, we can always
generate some encoding method in a particular
application that can switch among different
languages, but it does not provide a general
solution and it may not be compatible with the
underlying system support. We are currently
working on research that can truly support

multilingual applications. One of the directions
we have looked at is the used of 10646 codeset.

References
[1] Buhle E.L. Jr., "Writing International Code",

Digital Systems Journal, Vol 16, Iss 3, May,
1994

[2] H. Yoshioka and J. Melton, "Character
Internationalization In Databases: A Case
Study", Digital Systems Journal, Vol. 5, Iss
3, May, 1994

[3] R. Stokes, "New Information Technology:
Acquiring, Processing, And Accessing
Resources in Asian Languages", Australian

Library Review, Vol. 11, Iss. 3, Aug, 1994

[4] Hanzix Work Group, "The Hanzix Open
System", Proceedings of International

Conference on Chinese Computing '94, 1-4
June 1994, Singapore

[5] Michael Ranft, Walter Zimmer and Jochen
Alt, "OBST Release 3.3 User Guide and
Manual" , March 1993

[6] Adrian Nye and Tim O' Reilley, "The
Definitive Guides to the X window System
Volume Four : X Toolkit Intrinsics
Programming Manual OSF/Motif 1.2", Motif
Edition, O' Reilly & Associates, Inc., 1994

[7] Dan Heller & Paula M.Ferguson, "The
Definitive Guides to the X Window System
Volume Six A Motif Programming Manual
for OSF/Motif Release 1.2" Motif Edition, O'

Reilly & Associates, Inc., 1994

[8] "Introduction to XSI Internationalization",
X/Open Portability Guide, Volume 2.,
chapter 2-8.

[9] Sandra Martin O'Donnell, "Programming
for the World: A Guide To
Internationalization", Printice Hall, 1994

[10] Hanzix Work Group, "Hanzi Codeset
Conversion and Announcement",
Proceedings of the 1992 International

Conference on Chinese Information

Processing, Beijing, Oct., 1992

www.manaraa.com

[11] Hanzix Work Group, "Open Systems
Environment For Hanzi Input Methods",
Computer Processing of Asian Languages

'92, Kanpur, India, March 12-16, 1992

[12] Man Chi-pong and Yongguang Zhang,
"Cxterm: A Chinese Terminal Emulator for
the X window System", Software practices

and experiments, Vol. 22, Iss. 10, October
1994

